Search results for " mantle geochemistry"

showing 2 items of 2 documents

Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

2021

Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…

010504 meteorology & atmospheric sciencesCampi Flegrei mantle geochemistry CO2 emission Fumarole compositions Hydrothermal systems Volcanic unrest Volcano seismicityInduced seismicity010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationHydrothermal systemsCabin pressurizationGeochemistry and PetrologyCalderaPetrologyFumarole compositions0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryVolcanic unrest; Hydrothermal systems; Campi Flegrei; Fumarole compositions; CO2 emission; Volcano seismicityFront (oceanography)Volcano seismicityGeophysicsVolcanoVolume (thermodynamics)Volcanic unrestCO2 emissionMagmaCampi FlegreiGeology
researchProduct

Carbon concentration increases with depth of melting in Earth’s upper mantle

2021

Carbon in the upper mantle controls incipient melting of carbonated peridotite and so acts as a critical driver of plate tectonics. The carbon-rich melts that form control the rate of volatile outflux from the Earth’s interior, contributing to climate evolution over geological times. However, attempts to constrain the carbon concentrations of the mantle source beneath oceanic islands and continental rifts is complicated by pre-eruptive volatile loss from magmas. Here, we compile literature data on magmatic gases, as a surface expression of the pre-eruptive volatile loss, from 12 oceanic island and continental rift volcanoes. We find that the levels of carbon enrichment in magmatic gases cor…

PeridotitegeographyRiftgeography.geographical_feature_categoryCarbon mantle geochemistryGeochemistrychemistry.chemical_elementSilicateMantle (geology)NOVolcanic rockchemistry.chemical_compoundPlate tectonicschemistryVolcanoGeneral Earth and Planetary Sciencesmantle geochemistryCarbonGeologyNature Geoscience
researchProduct